43 research outputs found

    Vector trace cells in the subiculum of the hippocampal formation

    Get PDF
    Successfully navigating in physical or semantic space requires a neural representation of allocentric (map-based) vectors to boundaries, objects and goals. Cognitive processes such as path-planning and imagination entail the recall of vector representations, but evidence of neuron-level memory for allocentric vectors has been lacking. Here, we describe a novel neuron type, vector trace cell (VTC), whose firing generates a new vector field when a cue is encountered and a ‘trace’ version of that field for hours after cue removal. VTCs are concentrated in subiculum, distal to CA1. Compared to non-trace cells, VTCs fire at further distances from cues and exhibit earlier-going shifts in preferred theta phase in response to newly introduced cues, which demonstrates a theta-linked neural substrate for memory encoding. VTCs suggest a vector-based model of computing spatial relationships between an agent and multiple spatial objects, or between different objects, freed from the constraints of direct perception of those objects

    Vector trace cells in the subiculum of the hippocampal formation

    Get PDF
    Successfully navigating in physical or semantic space requires a neural representation of allocentric (map-based) vectors to boundaries, objects and goals. Cognitive processes such as path-planning and imagination entail the recall of vector representations, but evidence of neuron-level memory for allocentric vectors has been lacking. Here, we describe a novel neuron type, vector trace cell (VTC), whose firing generates a new vector field when a cue is encountered and a ‘trace’ version of that field for hours after cue removal. VTCs are concentrated in subiculum, distal to CA1. Compared to non-trace cells, VTCs fire at further distances from cues and exhibit earlier-going shifts in preferred theta phase in response to newly introduced cues, which demonstrates a theta-linked neural substrate for memory encoding. VTCs suggest a vector-based model of computing spatial relationships between an agent and multiple spatial objects, or between different objects, freed from the constraints of direct perception of those objects

    An intermittent hypercaloric diet alters gut microbiota, prefrontal cortical gene expression and social behaviours in rats

    Get PDF
    Objectives: Excessive consumption of high fat and high sugar (HFHS) diets alters reward processing, behaviour, and changes gut microbiota profiles. Previous studies in gnotobiotic mice also provide evidence that these gut microorganisms may influence social behaviour. To further investigate these interactions, we examined the impact of the intermittent access to a HFHS diet on social behaviour, gene expression and microbiota composition in adolescent rats. Methods: Male rats were permitted intermittent daily access (2 h / day) to a palatable HFHS chow diet for 28 days across adolescence. Social interaction, social memory and novel object recognition were assessed during this period. Following testing, RT-PCR was conducted on hippocampal and prefrontal cortex (PFC) samples. 16S ribosomal RNA amplicon sequencing was used for identification and relative quantification of bacterial taxa in faecal samples. Results: We observed reduced social interaction behaviours, impaired social memory and novel object recognition in HFHS diet rats compared to chow controls. RT-PCR revealed reduced levels of monoamine oxidase A (Maoa), catechol-O-methyltransferase (Comt) and brain derived neurotrophic factor (Bdnf) mRNA in the PFC of HFHS diet rats. Faecal microbiota analysis demonstrated that the relative abundance of a number of specific bacterial taxa differed significantly between the two diet groups, in particular, Lachnospiraceae and Ruminoccoceae bacteria. Discussion: Intermittent HFHS diet consumption evoked physiological changes to the brain, particularly expression of mRNA associated with reward and neuroplasticity, and gut microbiome. These changes may underpin the observed alterations to social behaviours

    An intermittent hypercaloric diet alters gut microbiota, prefrontal cortical gene expression and social behaviours in rats.

    Get PDF
    Objectives: Excessive consumption of high fat and high sugar (HFHS) diets alters reward processing, behaviour, and changes gut microbiota profiles. Previous studies in gnotobiotic mice also provide evidence that these gut microorganisms may influence social behaviour. To further investigate these interactions, we examined the impact of the intermittent access to a HFHS diet on social behaviour, gene expression and microbiota composition in adolescent rats. Methods: Male rats were permitted intermittent daily access (2 h / day) to a palatable HFHS chow diet for 28 days across adolescence. Social interaction, social memory and novel object recognition were assessed during this period. Following testing, RT-PCR was conducted on hippocampal and prefrontal cortex (PFC) samples. 16S ribosomal RNA amplicon sequencing was used for identification and relative quantification of bacterial taxa in faecal samples. Results: We observed reduced social interaction behaviours, impaired social memory and novel object recognition in HFHS diet rats compared to chow controls. RT-PCR revealed reduced levels of monoamine oxidase A (Maoa), catechol-O-methyltransferase (Comt) and brain derived neurotrophic factor (Bdnf) mRNA in the PFC of HFHS diet rats. Faecal microbiota analysis demonstrated that the relative abundance of a number of specific bacterial taxa differed significantly between the two diet groups, in particular, Lachnospiraceae and Ruminoccoceae bacteria. Discussion: Intermittent HFHS diet consumption evoked physiological changes to the brain, particularly expression of mRNA associated with reward and neuroplasticity, and gut microbiome. These changes may underpin the observed alterations to social behaviours

    The role of nitric oxide in pre-synaptic plasticity and homeostasis

    Get PDF
    Since the observation that nitric oxide (NO) can act as an intercellular messenger in the brain, the past 25 years have witnessed the steady accumulation of evidence that it acts pre-synaptically at both glutamatergic and GABAergic synapses to alter release-probability in synaptic plasticity. NO does so by acting on the synaptic machinery involved in transmitter release and, in a coordinated fashion, on vesicular recycling mechanisms. In this review, we examine the body of evidence for NO acting as a retrograde factor at synapses, and the evidence from in vivo and in vitro studies that specifically establish NOS1 (neuronal nitric oxide synthase) as the important isoform of NO synthase in this process. The NOS1 isoform is found at two very different locations and at two different spatial scales both in the cortex and hippocampus. On the one hand it is located diffusely in the cytoplasm of a small population of GABAergic neurons and on the other hand the alpha isoform is located discretely at the post-synaptic density (PSD) in spines of pyramidal cells. The present evidence is that the number of NOS1 molecules that exist at the PSD are so low that a spine can only give rise to modest concentrations of NO and therefore only exert a very local action. The NO receptor guanylate cyclase is located both pre- and post-synaptically and this suggests a role for NO in the coordination of local pre- and post-synaptic function during plasticity at individual synapses. Recent evidence shows that NOS1 is also located post-synaptic to GABAergic synapses and plays a pre-synaptic role in GABAergic plasticity as well as glutamatergic plasticity. Studies on the function of NO in plasticity at the cellular level are corroborated by evidence that NO is also involved in experience-dependent plasticity in the cerebral cortex

    The role of nitric oxide synthase in cortical plasticity is sex specific

    Get PDF
    Nitric oxide synthase-1 (NOS1) is involved in several forms of plasticity including hippocampal-dependent learning and memory, experience-dependent plasticity in the barrel cortex, and long-term potentiation (LTP) in the hippocampus and neocortex. NOS1 also contributes to ischemic damage during stroke and has a stronger deleterious effect in males than females. We therefore investigated whether the role of NOS1 in plasticity might also be sex specific. We tested LTP in the layer IV–II/III pathway between barrel columns and experience-dependent plasticity in the barrel cortex of αNOS1 knock-out mice and their wild-type littermates. We found that LTP was absent in male αNOS1 knock-out mice but not in females and that the residual LTP in females was not NO dependent. We also found that experience-dependent potentiation due to single whisker experience was significantly reduced in male αNOS1 knockouts but was unaffected in females. The αNOS1 knockout had a small effect on the development of the barrels, which were reduced in size by 20% compared with wild types, but this effect was not sex specific. We therefore conclude that neocortical plasticity mechanisms differ between males and females at the synaptic level, either in their basic plasticity induction pathways or in their ability to compensate for loss of αNOS1

    The developmental transcriptome of the human heart

    Get PDF
    The human heart develops through complex mechanisms producing morphological and functional changes during gestation. We have recently demonstrated using diffusion tensor MRI that over the relatively short space of 40 days, between 100–140 days gestational age, the ventricular myocardium transforms from a disorganised tissue to the ordered structure characteristic of mature cardiac tissue. However, the genetic basis underpinning this maturation is unclear. Herein, we have used RNA-Seq to establish the developmentally-regulated transcriptome of gene expression in the developing human heart across three gestational ages in the first and second trimester. By comparing 9 weeks gestational age (WGA) with 12 WGA, we find 288 genes show significant differential expression. 305 genes were significantly altered comparing 12 and 16 WGA, and 806 genes differentially expressed between 9 and 16 WGA. Network analysis was used to identify genetic interactions, node properties and gene ontology categories. In summary, we present a comprehensive transcriptomic analysis of human heart development during early gestation, and identify differentially expressed genes during heart development between 9 and 16 weeks, overlapping the first and early second trimester

    Characterization of cognitive deficits in mice with an alternating hemiplegia-linked mutation

    Get PDF
    Cognitive impairment is a prominent feature in a range of different movement disorders. Children with Alternating Hemiplegia of Childhood are prone to developmental delay, with deficits in cognitive functioning becoming progressively more evident as they grow older. Heterozygous mutations of the ATP1A3 gene, encoding the Na+,K+-ATPase α3 subunit, have been identified as the primary cause of Alternating Hemiplegia. Heterozygous Myshkin mice have an amino acid change (I810N) in Na+,K+-ATPase α3 that is also found in Alternating Hemiplegia. To investigate whether Myshkin mice exhibit learning and memory deficits resembling the cognitive impairments of patients with Alternating Hemiplegia, we subjected them to a range of behavioral tests that interrogate various cognitive domains. Myshkin mice showed impairments in spatial memory, spatial habituation, locomotor habituation, object recognition, social recognition, and trace fear conditioning, as well as in the visible platform version of the Morris water maze. Increasing the duration of training ameliorated the deficit in social recognition but not in spatial habituation. The deficits of Myshkin mice in all of the learning and memory tests used are consistent with the cognitive impairment of the vast majority of AHC patients. These mice could thus help advance our understanding of the underlying neural mechanisms influencing cognitive impairment in patients with ATP1A3-related disorders

    Transgenic rescue of phenotypic deficits in a mouse model of alternating hemiplegia of childhood

    Get PDF
    Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 are the primary cause of alternating hemiplegia of childhood (AHC). Most ATP1A3 mutations in AHC lie within a cluster in or near transmembrane α-helix TM6, including I810N that is also found in the Myshkin mouse model of AHC. These mutations all substantially reduce Na+,K+-ATPase α3 activity. Herein, we show that Myshkin mice carrying a wild-type Atp1a3 transgene that confers a 16 % increase in brain-specific total Na+,K+-ATPase activity show significant phenotypic improvements compared with non-transgenic Myshkin mice. Interventions to increase the activity of wild-type Na+,K+-ATPase α3 in AHC patients should be investigated further
    corecore